

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 4800-4803

Propionylpiperazines as human melanocortin-4 receptor ligands

Caroline W. Chen, Joe A. Tran, Wanlong Jiang, Fabio C. Tucci, Melissa Arellano, Jenny Wen, Beth A. Fleck, Dragan Marinkovic, Nicole S. White, Joseph Pontillo, John Saunders, Ajay Madan, Alan C. Foster and Chen Chen,

^aDepartment of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA

^bDepartment of Pharmacology, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA

^cDepartment of Neuroscience, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA

^dDepartment of Preclinical Development, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA

Received 30 May 2006; revised 21 June 2006; accepted 22 June 2006 Available online 7 July 2006

Abstract—A series of α -benzylpropionylpiperazines were synthesized and tested as antagonists of the melanocortin-4 receptor. In addition to its high potency and selectivity, R-11a had desirable pharmacokinetic properties including high brain penetration in mice.

© 2006 Elsevier Ltd. All rights reserved.

We have previously identified a series of arylpropionylpiperazines such as **1b** as melanocortin-4 receptor (MC4R) antagonists from an initial lead **1a**. It has been found that introducing an amino acid group increases binding affinity. Thus, the glycine derivative **2** has a K_i value 19 nM, which is about 4-fold better than **1b**. To further improve potency of this novel series, we have conducted an extensive survey on the 'right-hand' amide. Here, we report the discovery of potent and orally bioavailable MC4R antagonists (Fig. 1).

Compounds **4–14** were prepared from reactions of the key intermediate **3**² with various carboxylic acids under coupling conditions, or acid chlorides. α-Benzylpropionic acids for **8–12** were synthesized from the benzylation of methylmalonate, followed by hydrolysis and decarboxylation.³ Chiral α-benzylpropionic acids were synthesized from alkylation of propionyl oxazolone as an Evan's chiral auxiliary.⁴ Finally, 1,1-dimethyl-3-(4-chlorophenyl)propionic acid for **14** was synthesized from benzylation of the corresponding isobutyric acid.⁵ These compounds were then tested for their binding

piperazine **1b** ($K_i = 74 \text{ nM}$), the 2,4-dichlorophenylacetyl analog **4a** ($K_i = 2.8 \mu\text{M}$) was much less potent (Table 1). Other 4-chlorophenyl and cyclohexyl analogs (**4b-e**) were only weakly active. The 2,4-dichlorophenoxyacetamide **5a** had a K_i of 4.2 μ M, which

affinity at the human MC4 receptor using [125I]NDP-

In comparison with 3-(2,4-dichlorophenyl)propionyl-

MSH as previously reported⁶ (Fig. 2).

hlorophenoxyacetamide 5a had a K_i of $4.2 \,\mu\text{M}$, which was much less potent than its carbon derivative 1b. A broad survey of substituted phenoxy analogs only resulted in weakly potent compounds (5b-n) regardless of the substitution on the phenyl ring. Similarly, the 2,4-dichlorophenylthioacetamide 6a ($K_i = 1.5 \,\mu\text{M}$) was weakly potent. Other amine-containing compounds (7a-e) displayed poor binding affinity. These results suggest that the 2,4-dichlorophenyl group of compounds 4a, 5a or 6a is not able to mimic that of 1b, possibly due to its unfavored conformation caused by the different connection (Table 1).

We then introduced a methyl group at the α -position of the phenylpropionyl group of **1** to reduce the flexibility of this side chain. Thus, the *R*-configured methyl analog of **1b** was found to have potency about 3-fold better than its parent (*R*-**8p**, $K_i = 26$ nM), while the *S*-antipode *S*-**8p** was approximately 2-fold less active than **1b**. It was also found by surveying the substitution at the phenyl ring of the racemic α -benzylpropionyl group that the

Keywords: Propionylpiperazine; Melanocortin-4 receptor; Antagonist; Pharmacokinetic.

^{*}Corresponding author. Tel.: +1 858 617 7600; fax: +1 858 617 7967; e-mail: cchen@neurocrine.com

Figure 1. Phenylpropionylpiperazine MC4R antagonists.

Figure 2. Compounds synthesized for this study.

4-chloro (8a) and the 2,4-dichloro compound 8p (by comparing the R-isomers) possessed similar binding affinity, while the 4-methoxy analog (8b) was less potent. The 3-substitution was detrimental for potency, thus, compounds 8c-j were low to moderately active. For the 2,4-di-substitution (8k-0), 2-methoxy-4-chlorophenyl gave a compound with the best binding affinity (8o, $K_i = 14$ nM). The R-isomer of 8o (R-8o, $K_i = 6.5$ nM) was about 5-fold better than its S-isomer, which agreed with the results from compounds R-8p and S-8p (Table 2).

For substitution at the 'left-hand' phenyl ring, a chlorogroup almost matched with the trifluoromethyl moiety for binding affinity (9a–c), while a less lipophilic fluorine decreased potency (10a, K_i = 390 nM). The R-configured 4-methyl analogs (R-11a–d) were comparatively active to 9, while the unsubstituted compounds (R-12a–d) displayed about 2- to 3-fold reduction in binding affinity, suggesting the 4-trifluoromethyl group from the initial lead was not critical for potency, although its strong electron-withdrawing property might reduce the potential metabolic oxidation of the electron-rich aniline group. Finally, the R-benzylamine 13 (K_i = 1.7 μ M) exhibited much lower binding affinity than its S-isomer (R-12d, K_i = 12 nM), demonstrating stereo-preference of this α -alkyl benzylamine group (Table 2).

Interestingly, the α,α -dimethyl phenylpropionyl compound 14 exhibited a K_i of 810 nM, which was over 10-fold less potent than 1b. All these results seem to suggest that the R-methyl group of 8–12 locks the phenyl ring at the propionyl group into a favored conformation

Table 1. SAR of substituted acetamides at the human MC4R

	0		
Compound	\mathbb{R}^1	K _i (nM)	
4a	2,4-ClPh	2800	
4b	4-ClPhCOCH ₂	820	
4c	4-ClPhCOCH(Me)	1100	
4d	c-HexCH ₂	5700	
4e	c-HexCH ₂ CH ₂	4100	
5a	2,4-ClPhO	4200	
5b	PhO	>10,000	
5c	4-ClPhO	2900	
5d	4-MePhO	4400	
5e	4-MeOPhO	3800	
5f	4-HOPhO	4600	
5g	4-NO ₂ PhO	3100	
5h	3-ClPhO	2600	
5i	2-ClPhO	4500	
5j	2,4-MePhO	4000	
5k	3,4-ClPhO	2500	
51	2,3-ClPhO	2500	
5m	1-Naphthyl-O	2600	
5n	2-Naphthyl-O	2000	
6a	2,4-ClPhS	1500	
7a	PhNH	3600	
7b	1-Benzimidazolyl	2100	
7c	c-HexNHCH ₂	4800	
7d	NH ₂ COCH ₂	>10,000	
7e	Me_2NCOCH_2	>10,000	

Table 2. SAR of 2-methyl-3-arylpropionyl amides at human MC4R

Compound	X	Y	K _i (nM)
8a	CF ₃	4-Cl	47
R-8a	CF_3	4-C1	31
8b	CF_3	4-MeO	120
8c	CF_3	3-C1	920
8d	CF_3	3-MeO	3100
8e	CF_3	3-EtO	2200
8f	CF_3	3-Me,4-Cl	71
8g	CF_3	3,4-Me	240
8h	CF_3	3-F,4-MeO	200
8i	CF_3	3-MeO,4-Cl	230
8j	CF_3	3,4-C1	120
8k	CF_3	2,4-Me	92
81	CF_3	2-F,4-Cl	60
8m	CF_3	2-Me,4-Cl	38
8n	CF_3	2-HO,4-Cl	36
80	CF_3	2-MeO,4-Cl	14
R-80	CF_3	2-MeO,4-Cl	6.5
S-80	CF_3	2-MeO,4-Cl	31
R- 8 p	CF_3	2,4-C1	26
S- 8p	CF_3	2,4-C1	140
8r	CF_3	2-MeO,2,4-Cl	230
8q	CF_3	3,4-Cl	1600
9a	Cl	4-C1	67
9b	C1	4-MeO	160
9c	Cl	2-MeO,4-Cl	9.1
10a	F	4-C1	390
R-11a	Me	4-C1	25
R-11b	Me	2-Me,4-Cl	5.9
R-11c	Me	2-F,4-Cl	20
R-11d	Me	2-MeO,4-Cl	8.1
R-11e	Me	2,4-C1	8.8
R-12a	Н	4-C1	80
R-12b	Н	2-F,4-Cl	67
R-12c	Н	2,4-Cl	16
R-12d	Н	2-Me,4-Cl	12
13		,	1700

for its interaction with the receptor.^{8,9} The 'Y' shape conformation for the Tic-D(4-Cl)Phe piperazine of the THIQ MC4R agonist has been demonstrated by its X-ray structure.¹⁰

Selected compounds were further tested for their selectivity over the other melanocortin receptor subtypes. Thus, **80** displayed low affinity at the MC1 and MC3 receptors, while it still had moderate binding affinity at the MC5 receptor ($K_i = 80$ nM, Table 3). In contrast, R-**11a** exhibited high selectivity. None of the compounds exhibited significant stimulation of cAMP release in cells expressing the MC4 receptor, demonstrating that they were not functional agonists. Instead, **80** and R-**11a** showed dose-dependent inhibition of α -MSH-stimulated cAMP production with IC₅₀ values of 1.7 and 0.56 μ M, respectively.

Table 3. Selectivity profiles of 80 and R-11a^a

Compound	$K_{\rm i}~({ m nM})$			
	MC1R	MC3R	MC4R	MC5R
80	(23%)	320	14	86
R-11a	3100	1300	25	1000

^a Binding affinity at the human melanocortin receptors stably expressed in HEK 283 cells using [¹²⁵I]NDP-MSH as radiolabeled ligand.

Table 4. Pharmacokinetic parameters of compounds 80 and R-11a in mice^a

Compound	80	R-11a
iv dose (mg/kg)	5	5
CL (mL/min kg)	62.3	33.3
$V_{\rm d}$ (L/kg)	10.3	10.2
$t_{1/2}$ (h)	1.9	3.5
AUC (ng/mL h)	1452	2558
C _{brain} (ng/g)@1, 4 h	735, 122	940, 330
$C_{\rm brain}/C_{ m plasma}$	2.3, 1.9	2.9, 1.4
po dose (mg/kg)	10	10
C_{max} (ng/mL)	99	267
$T_{\rm max}$ (h)	0.25	0.5
AUC (ng/mL h)	249	1762
F (%)	8.6	34.4

^a Average of three animals.

Due to the desirable in vitro properties, 80 and R-11a were profiled for their pharmacokinetic properties in mice. After an intravenous injection at 5 mg/kg, 80 exhibited a plasma clearance (CL) of 62.3 mL/min kg, and volume of distribution (V_d) of 10.3 L/kg, resulting in a half-life $(t_{1/2})$ of 1.9 h in this species. At 1 and 4 h postdosing, the whole brain concentrations were 735 and 122 ng/g, which gave brain/plasma ratio of 2.3 and 1.9, respectively. After an oral dose of 10 mg/kg, 80 reached a maximal concentration of 99 ng/mL at 0.25 h, suggesting a very fast absorption. Its area under curve (AUC) was 249 ng/mL h, which resulted in an absolute bioavailability of 8.6%. The low bioavailability could be caused by its high clearance associated with its high lipophilicity (measured $\log D$ was > 4). 11,12 In comparison, the less lipophilic R-11a (measured $\log D$ of 3) had a CL value of 33.3 mL/min kg, a V_d of 10.2 L/kg, and a $t_{1/2}$ of 3.5 h. In addition to its high brain penetration (b/p ratio was 2.9 and 1.4 at 1 and 4 h postdosing, respectively), R-11a had an oral bioavailability of 34.4% (Table 4).

In conclusion, a series of α -benzylpropionylpiperazines were synthesized and tested as antagonists of the melanocortin-4 receptor. Potent and selective derivatives were discovered from this series. In addition, R-11a had good pharmacokinetic profile, including high brain penetration.

References and notes

 Jiang, W.; Tucci, F. C.; Chen, C. W.; Arellano, M.; Tran, J. A.; White, N. S.; Marinkovic, D.; Pontillo, J.; Fleck, B. A.; Wen, J.; Saunders, J.; Madan, A.; Foster, A. C.; Chen, C. Bioorg. Med. Chem. Lett. 2006, in press.

- Jiang, W.; Chen, C.; Marinkovic, D.; Tran, J. A.; Chen, C. W.; Arellano, L. M.; White, N. S.; Tucci, F. C. J. Org. Chem. 2005, 70, 8924.
- Johansson, A. M.; Mellin, C.; Hacksell, U. J. Org. Chem. 1986, 51, 5252.
- Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
- Mueller, R.; Yang, J.; Duan, C.; Pop, E.; Geoffroy, O. J.; Zhang, L. H.; Huang, T.-B.; Denisenko, S.; McCosar, B. H.; Oniciu, D. C.; Bisgaier, C. L.; Pape, M. E.; Freiman, C. D.; Goetz, B.; Cramer, C. T.; Hopson, K. L.; Dasseux, J.-L. H. J. Med. Chem. 2004, 47, 6082.
- Nickolls, S. A.; Cismowski, M. I.; Wang, X.; Wolff, M.; Conlon, P. J.; Maki, R. A. J. Pharmacol. Exp. Ther. 2003, 304, 1217.

- For a recent review on this topic, see: Bohm, H. J.;
 Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.;
 Obst-Sander, U.; Stahl, M. Chem. Biochem. 2004, 5, 637.
- Chen, C.; Pontillo, J.; Fleck, B. A.; Gao, Y.; Wen, J.; Tran, J. A.; Tucci, F. C.; Marinkovic, D.; Foster, A. C.; Saunders, J. J. Med. Chem. 2004, 47, 6821.
- Fleck, B. A.; Chen, C.; Yang, W.; Huntley, R.; Markison, S.; Nickolls, S. A.; Foster, A. C.; Hoare, S. R. *Biochemistry* 2005, 44, 14494.
- Mutulis, F.; Yahorava, S.; Mutule, I.; Yahorau, A.; Liepinsh, E.; Kopantshuk, S.; Veiksina, S.; Tars, K.; Belyakov, S.; Mishnev, A.; Rinken, A.; Wikberg, J. E. J. Med. Chem. 2004, 47, 4613.
- 11. Pajouhesh, H.; Lenz, G. R. NeuroRx 2005, 2, 541.
- 12. Singh, S. S. Curr. Drug Metab. 2006, 7, 165.